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Spin and charge order in the CE phase of La;_,Ca MnO;

P. Schlottmann
Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
(Received 2 July 2009; published 24 September 2009)

The CE phase of La;_,Ca,MnOj is stable for x=0.5 and displays long-range magnetic, charge, and orbital
orders. The magnetic order of the Mn spins arises from the competition of the superexchange and double-
exchange interactions and the checkerboard charge and the orbital order is the consequence of the Jahn-Teller
coupling of the e, orbitals to the lattice. Using a mean-field slave-boson approach for the e, electrons in two
orbitals per site with excluded multiple occupancy and Hund’s rule coupling between the e, and 1,, states, we
obtain the tight-binding band structure of the CE phase. The unit cell of the CE phase consists of 16 sites. The
32 e, bands in the Brillouin zone are grouped into two sets of 16 bands separated by a charge order gap. The
phase diagram including the A, B, C, CE, and G phases reproduces the phase sequence observed in

La;_,Ca,MnO;.
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I. INTRODUCTION

The rich phase diagram of La,;_,Ca,MnO; (LCMO) is the
consequence of the interplay of spin, charge, orbital, and
lattice degrees of freedom.!> The end compounds of LCMO,
LaMnO; and CaMnQOs, are antiferromagnetic (AFM) insula-
tors while for intermediate x the system is either a ferromag-
netic (FM) metal or a charge-ordered AFM and may display
phase separation?’5 In addition, Jahn-Teller distortions, or-
bital order, and spin canting play an important role. Many of
the phases of LCMO were identified in early papers®’ and
denoted with A, B, C, CE, and G according to their magnetic
and charge orders. In the B phase all localized spins are FM
correlated while in the G phase each up spin is surrounded
by neighbors with down spins and vice versa. In the A phase
the localized spins are FM oriented in the x-y planes and
these planes are AFM stacked along the z direction. The C
phase consists of FM chains along the z direction, which are
AFM correlated to each other in the x-y plane. The CE phase
is considerably more complex involving 16 sites per unit cell
with magnetic, charge, and orbital orders.

In perovskites the range of substitutions, e.g., La by Ca, is
limited by the tolerance factor. The tolerance factor is de-
fined as the ratio of the distance between the cation R and O
ions and the MnO bond length divided by V2, ie.,
dp_o/ (\2dy0). Only for LCMO the tolerance factor is
close to one and the alloy can form over the entire concen-
tration range, 0=x=1.%8

In a previous publication’ we studied LCMO as a cubic
lattice of mixed-valent Mn ions with the #,, spins (treated
classically) oriented in the spin arrangements of the A, B, C,
and G phases.® The multiple occupancy of the e, levels at
each site is prevented by a large Coulomb interaction, which
is taken into account with auxiliary bosons in the mean-field
approximation. The e, electrons are allowed to hop between
nearest-neighbor sites with amplitude ¢, which gives rise to
the ferromagnetic double exchange.'®!" We obtained the
band structure for the e, electrons and the ground-state en-
ergy for each of the phases. For a given doping x the phase
diagram then only depends on one parameter, namely, J/¢.
The results improve if the hopping matrix element for the
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longer FM bonds is rescaled to r— o6t while AFM links are
kept with hopping ¢.° In this paper we extend this calculation
to include the more involved CE phase. This way the se-
quence of phases of LCMO as a function of x is reproduced
for J/t on the order of a few percent. The parameter & plays
an important role in the fine tuning of the phase diagram.

Our results’ have been extended to include the Jahn-Teller
coupling to the lattice.'? A Jahn-Teller distortion lifts the de-
generacy of the e, levels and changes the band structure. Due
to the anisotropic spin configurations of the A and C phases
the stability of these phases grows at the expense of the B
and G phases. The Jahn-Teller distortion consists of a com-
pression (expansion) of the ¢ axis for the A phase (C phase)
(Ref. 12) in agreement with experiments.®!? Further exten-
sions of this calculation involve instabilities toward the cant-
ing of spins and long-range orbital order in the A phase.!4-16

In this paper we present an extensive study of the CE
phase. The CE phase is considerably more complex than the
other phases, consisting of 16 sites in two planes per unit cell
with magnetic, charge, and orbital orders. Our emphasis here
is on the spin arrangements and the checkerboard order of e,
charges. Early models for the CE phase involve FM zigzag
chains' and Monte Carlo simulations on small system
sizes'”!® and interfaces.!” Mean-field approaches?*2! and ab
initio band-structure calculations®?> were carried out more re-
cently.

The rest of the paper is organized as follows. In Sec. II we
restate the basic model for all the manganite phases. In Sec.
IIT the unit cell of the CE phase is introduced as well as the
interaction between sites arising from the Jahn-Teller cou-
pling to the lattice which is needed to drive the charge order.
In Sec. IV we obtain the band structure for the e, electrons
for x=0.5, a self-consistent mean-field solution for the
ground state of the CE phase and the J/T vs x phase diagram
which is compared to the experimental observations for
LCMO. Concluding remarks are presented in Sec. V.

II. MODEL

In LCMO the Mn ions form a nearly simple-cubic lattice
with one oxygen ion located approximately on the center of

©2009 The American Physical Society
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each side and the trivalent La or divalent Ca atoms at the
body center. The O~ ions mediate the binding between the
Mn ions while the role of La and Ca doping is to provide
conduction electrons.” The Mn ions are in a mixed trivalent
(3d*) and tetravalent (3d%) state which depends on x. In cu-
bic symmetry the five 3d levels are split into a 1,, triplet and
an e, doublet. Within octahedral coordination the 1,, states
have lower energy than the e, orbitals so that the three 7,,
orbitals are all singly occupied with their spins coupled to
form a total spin §=3/2. The e, orbitals, on the other hand,
are empty for Mn*" and occupied by one 3d electron in
Mn**, which is FM correlated with the 1, electrons (Hund’s
rule) to form a total spin S*=2. The intermediate-valence
character of the Mn ions arises from the hopping of the e,
electrons.

A. Electronic and magnetic interactions

The Hamiltonian is written as H=H,+H,,, where H, rep-
resents the hopping of the e, electrons between the Mn sites
on a simple-cubic lattice and H,, is the magnetic energy aris-
ing from the superexchange between the f,, spins. At this
point we neglect the Jahn-Teller coupling of the e, electrons
to the lattice (see below).

The nearest-neighbor hopping Hamiltonian for the e,
electrons is given by”??

Hy=—pu 2 |jS*M*m)jS*M"m|
JM*m

-t X
Ql}mjm,(erMleMl

11
(SMj,—a|s—S*Mf)
277" T

| B S
N (SMZ,EU|SES M,){| iS"Mim,)(jSM]

X Mmjm[(Rﬂ)|zSM,><ls*M;"m,| +H.c). (1)

Here the bra and ket denote the states of the Mn** configu-
ration represented by a spin S(=3/2) and z-projection M, and
the states of the Mn** configuration of spin §*=S+ %(:2) and
spin projection M*. The localized 3d electrons are then all
FM correlated (first Hund’s rule). The Clebsch-Gordan coef-
ficients select the spin components and are needed to pre-
serve the spin rotational invariance. j labels the sites on a
simple-cubic lattice. The index m:xz—y2,z2 labels the e,
orbitals and o is the spin component of the e, electron. The
Mn** states have in addition a label m to indicate which of
the e, states is occupied. The completeness condition for the
states requires that at every site

2 S M m)GS M m| + 2 [iSM)GSM| =1, (2)

M*m M

which excludes the multiple occupancy of the e, levels, i.e.,
they can only be empty or occupied by one electron. This
corresponds to an implicit infinite on-site Coulomb repul-
sion.

The first term in Eq. (1) determines the chemical potential
m for the itinerant electrons while the second term corre-
sponds to the nearest-neighbor intersite hopping. The sum is
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over all the nearest-neighbor pairs (jl) and Ry, is the vector
joining the sites j and /. The hopping matrix M’";mz(Rﬂ)
depends on Ry, ie., Mx=(2f+ 7.+ \s’g%x)/4, A;I},:(Zf+ 7.
—\3%,)/4, and I\;IZ=(i —#.)/2. Here I and #; are the identity
and Pauli matrices for the orbital pseudospin of components
(x>*~y?,z%). These hopping matrices are determined by the
overlap of the asymptotes of the e, wave functions. The fact
that x>~y? and z* orbitals on neighboring sites have in gen-
eral nonzero overlap implies that m is not a good quantum
number.

The magnetic energy H,, arises from the superexchange of
the #,, spins mediated by the oxygen atoms and depends on
the spin configuration of each phase, i.e., A, B, C, CE, and G
phases of La;_,Ca,MnO;.° In mean field the Heisenberg
superexchange reduces to H,=—aJS’N, where a,=-1, ag
=-3, ac=+1, acg=+1, and az=+3. Here N is the number of
Mn sites. The coupling strength J can be estimated from the
transition temperature of the end compounds and should be
on the order of 100 times smaller than the hopping .

B. Slave-boson mean-field approximation

We introduce slave-boson creation and annihilation
operators,>>* b;fM and by, which act as projectors onto the
states of the Mn** configuration with spin component M at
site j, and fermion operators for the Mn>* states at the site j,
de*m, and d+,,, with spin and orbital components M* and
m. The completeness relation (2) is now

% bivbing+ 2 dippen@irrn =1. 3)

M*m

Transitions between configurations are described by the op-
erators |jSM)(jS*M*m|=b},d,y-,. The total Hamiltonian in
the auxiliary space is now given by
H=-aJS’N=-p 2 diyp, disn
iM*m

1 1
—t > (SMj’EO-|SES*M;)
(jlym jmyoM MMM

P,
X SM,,EalSES M, |{d

:
iMim; iM;
X My (Ri)biyy dipgym, + Hoc (4)

subject to the constraint [Eq. (3)], which restricts the model
to the physical subspace. The above slave-boson formulation
is exact, i.e., it does not contain approximations with respect
to the original Hamiltonian.

The spin-projections M ;= =S of the t,, moments are de-
termined by the magnetic phase under consideration. The
spin projection of the Mn>* ion is M;: * S+o0 and hence the
spin component o of the e, electron is a good quantum num-
ber. o is either parallel or antiparallel to M; yielding a
Clebsch-Gordan coefficient equal to 1 or 1/v2S+1, respec-
tively. We denote these coefficients a;, and the index M; of
the fermion operators can be replaced by o, i.e., djg,.
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FIG. 1. Magnetic order of the A, B, C, and G phases of LCMO.
There are two Mn ions in the unit cell of the A, C, and G phases
while the one of the B phase consists of only one Mn atom. Within
the present approximations only the relative direction of the spins is
important but the ground-state energy is invariant under the simul-
taneous rotation of all the spins.

Hamiltonian (4) subject to the constraint [Eq. (3)] is stud-
ied in the mean-field (saddle-point) approximation,’ i.e., the
boson operators are replaced by their expectation values.”
Since in the A, B, C, and G phases all Mn sites have the
same valence we have <bjMf>:<b;M/_):b for M;=S or M;
=-5, depending on the magnetic configuration and all others
are zero. The case of the CE phase is discussed in Sec. III.
The constraint [Eq. (3)] is incorporated via a Lagrange mul-
tiplier A;=A\, which is the same for all sites. The mean-field
Hamiltonian is

H,;=—aJS?N - N\(1 - b?)

+ ()\ - /J*)Z d}-omdjo'm - tbz E ajgQ|y
Jjom Glhyomm,

X [d]

Mmjm](le)dlaml+H'C']~ (5)

All five phases have different magnetic unit cells. The
magnetic order of the A, B, C, and G phases is shown in Fig.
1. While the unit cell of the B phase has only one ion, the
ones of the A, C, and G phases have two Mn ions and the
unit cell of the CE phase has 16 sites.® The band structure for
the e, electrons is obtained by Fourier transforming and di-
agonalizing Eq. (5). For the A, C, and G phases there are
four bands arising from the two e, levels and the two sites
per unit cell. In the case of the B phase the four bands arise
from the two e, levels and the spin.” The band structure of
the CE phase is discussed in Sec. IV. We denote the diagonal

states with a tilde, i.e., waa, where =1, ...,4 and the cor-
responding energies with E’ (k). The occupation numbers

(;ZIT(MZZMQ are given by Fermi functions. The ground-state
energy
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FIG. 2. Checkerboard pattern for the charge order in the CE
phase of LCMO. The open (filled) circles correspond to a site with
decreased (increased) charge. The arrows indicate the magnetic or-
der in the plane. The spins in successive planes are alternately an-
tiparallel and parallel to this plane with identical charge configura-
tion. The bows indicate the 3x*>—72 and 3y?—r? orbital order of the
nearly trivalent sites. The dashed lines denote the unit cell which
altogether contains 16 sites (two planes).
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Egg=— aJS’N - N\(1 - b?)
+ 2 N w+E RN - n+E (k)] (6)
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is minimized with respect to b and . This yields two tran-
scendental equations, which are solved self-consistently.

III. CE PHASE

The CE phase has a checkerboard charge order in addition
to the complex magnetic order in the x-y plane shown in Fig.

2. All spins are reversed in the neighboring planes but the 0
vector for the charge order is (77, 7,0). The dashed lines in
Fig. 2 denote the unit cell in the x-y plane. Note that the up
spins form a zigzag chain in the (1,1,0) direction with a unit
length of two lattice spacings. Considering the double ex-
change, this path has the largest hopping amplitude and is the
favorite direction for the propagation of the e, electrons.!
The model for the CE phase is H=H,+H,,+Hy, where H,
and H,, are the hopping of the e, electrons and the superex-
change interaction discussed in the previous section. Here
Hyy is the interaction driving the charge order. The descrip-
tion in terms of auxiliary bosons, Eq. (4), with the complete-
ness condition (3) also remains valid. The mean-field ap-
proximation has to be reformulated since the valence is no
longer the same at every Mn site. We have to distinguish
between two different charge states, i.e., two different boson
expectation values, b; and b,. Similarly, the completeness
condition requires two different Lagrange parameters for the
two sites, A; and \,. Although the completeness condition is
formally the same at every site, e.g., Eq. (3), a different
potential N\ is required at the two sites to enforce complete-
ness. The expectation value of the ground-state energy has
now to be minimized with respect to by, by, A;, and \,.
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FIG. 3. Checkerboard charge order and antiferro-orbital order of
the CE phase as seen in the x-z plane. The dark circles represent the
smaller Mn** ions and the open circles the larger Mn3* ions. The
trivalent ions have an e, electron either in the 3x2=r% or 3y>—r?
orbital, denoted with x and y, respectively. The straight segments
join the O?* ions of the MnOg octahedra. The octahedra containing
a Mn?* ion are elongated along the axis of the orbital.

Without an interaction Hy, driving the charge imbalance
there is no charge order, i.e., b;=b, and N;=N\,, and the
valence is the same at every Mn site. If the charge order
would be driven by a nearest-neighbor Coulomb interaction
the wave vector for the order would be Q= (7,7, ) and not
(7r,7,0). The most likely origin of Hy, is the Jahn-Teller
effect. There are three normal modes of vibration of the
MnOy octahedra usually denoted by Q,, Q,, and Q5.2° Here
Q, corresponds to the breathing mode which preserves the
symmetry of the octahedron. O, and Q5 deform the octahe-
dron preserving its volume. This lifts the degeneracy of the
e, orbitals.

For simplicity we first argue with integer valent Mn ions.
Octahedra containing a Mn®* ion occupy a larger volume
than those with a Mn** ion because of the presence of the e,
electron. In addition, the e, electron is in a specific orbital (or
linear combination of orbitals), which in the present notation
is either 3x>~7? or 3y?—r% The octahedra are elongated
along the direction of the axis of the orbital. This gives rise
to antiferro-orbital order with alternating 3x*—r* and 3y*
—r2 orbitals on the Mn3* sites, which is the most efficient
way to fill the area of the x-y plane by displacing the corner-
shared oxygen ions. Along the z direction the orbitals remain
the same (see Fig. 3). The geometry of the displacements of
the oxygen ions in one x-y plane leads to identical displace-
ments in the nearest-neighbor planes. Consequently, the
charge order has é=(7r,77,0) and the e, electrons in neigh-
boring planes are in the same orbitals. The above arguments
do not change if the Mn ions are mixed valent (with partial
charge order) instead of integer valent.

The most important contribution to Hyy is mediated by the
0, mode and we will ignore the other two modes here. The
Jahn-Teller Hamiltonian consists of two terms, namely, the
elastic deformation energy of the lattice and the coupling of
the ¢, electrons to the phonons,?

Hy=5 S COT )30
P
+2N2 g(p)Re 01(P) > Pom(P) (7)
P om

where C(p) is the phonon energy, g(p) the coupling constant,
0,(p) is the phonon eigenmode with momentum p, and
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Pom(P) is the charge-density wave with momentum p of spin
o and orbital m. We keep only the staggered mode with
momentum (7, 7,0), which is the relevant one for the charge

order. Minimizing H,; with respect to the amplitude Q,(p)
we obtain

~ . .gp . .
0,(p)=- 2C(p) (= 11y),
2
Hyp=- ZN%(”AI - ﬁz)z, (8)

where 71, and 7, are the average e, occupation of the sublat-
tices, i.e., Aj=(2/N)Z; g,y ;s for 1=1,2 with j belong-
ing to the sublattice /.

This interaction vanishes for 71,=1,, i.e., the A, B, C, and
G phases are not affected by this interaction. The effect of
this interaction is maximum in the CE phase for x=0.5. De-
noting W=8[g(p)]*/ C(p), the mean-field Hamiltonian Hy, is

Hy=(W2)(b; - 53) 20 (- )*'d),dig, ©)

J.o.m

where /=1 or 2 depending on whether j belongs to the sub-
lattice 1 or 2, leading to a staggered potential.

The interaction strength W is x dependent. If x>1/2 there
are more e, holes than required for half filling. This allows
the e, electrons to move more freely and as a consequence
the lattice softens, i.e., the elastic constant C(p) is reduced.
Similarly, the coupling of the e, electrons to the lattice, g(p),
is expected to increase with the mobility of the electrons.
Hence, W(x) is an increasing function for x> 1/2. The con-
trary occurs for x<<1/2. Now there are more e, electrons
than needed for half filling and the hard-core repulsion
makes their motion more difficult. The elastic energy in-
creases and the electron-phonon coupling weakens due to the
defects in the checkerboard superstructure. Due to the hard
core there is clearly an asymmetry between x>1/2 and x
< 1/2. Assuming that W(x) is an analytic function of x at x
=1/2, we expand

W(x) =Wyl + alx—1/2) +---], (10)

where « is a dimensionless constant of the order of unity. We
only keep the linear term in (x—1/2) and neglect higher
order contributions.

The e, bands are obtained by Fourier transforming and
diagonalizing the mean-field Hamiltonian using the spin con-
figuration of the CE phase. The e, band structure for x=0.5
has been presented in Ref. 27. In Sec. IV we calculate the
total energy, which is then minimized with respect to by, b,,
N\i, and N,. This yields transcendental equations, which are
solved self-consistently.

In models (1) and (4) the complicated nature of the Mn-O
bonds is strongly simplified. Experimentally it has been
found that FM nearest-neighbor bonds are considerably
longer than those of AFM bonds.® This is most likely due to
Jahn-Teller distortions of MnQOy octahedra.'? The actual lat-
tice parameters strongly depend on the sample preparation.'3
In Ref. 9 we incorporated the change in the hopping ¢ and the
superexchange J due to deviations from the cubic symmetry.
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FIG. 4. Band structure for electrons in the e, orbitals of the CE
phase at x=0.5. The parameters are W=3.11¢, 6t/t=0.1, n;=0.900,
n,=0.100, N;=1.3914¢, and A,=0.1554¢. The Fermi level is at zero
energy. The charge order gap separates the 32 bands into two sub-
groups of 16 bands.

The simplest approach is to assume that the hopping de-
creases with the distance between the Mn sites, i.e., that it is
reduced by the amount &t for a FM bond as compared to an
AFM bond.” Hence, we denote with ¢ the hopping matrix
element of an electron between AFM correlated sites and
with 7— ot the hopping between sites with parallel spins. This
effect is assumed to be due to the change in bond length only
and is additional to the Clebsch-Gordan coefficients that fa-
vor hopping if the spins are all parallel (double exchange).
We will choose dt/t=0.1. The superexchange involves the
fourth power of the charge transfer between a Mn ion and
02, ie., it is quadratic in ¢. Hence, the reduction in J, i.e.,
&J1J, is just given by 26t/t. The effect of ot on the band
structure of the A, B, C, and G phases and the J/t vs x phase
diagram for these four phases has been discussed in Ref. 9.
In the following section we limit ourselves to analyze the
consequences for the CE phase.

IV. RESULTS
A. Band structure of e, electrons in the CE phase

We adopt the simple-cubic Brillouin zone to facilitate a
comparison with the other phases already discussed in Ref.
9. The I' point corresponds to k=0 at the body center of the
cube, the X point at the center of the face, the M point at the
middle of a side, and the R point at the corner of the cubic
Brillouin zone. Due to the magnetic order, the x, y, and z
directions are not equivalent. The band structure shown is
along the following directions: from I' to X along k
=(k,,0,0), then from X to M varying k, from 0 to 7 along
(m,ky,0), from M to R along (m, k) from R to I' along
(k/\S)(l 1,1), and from I" to M alotlg (k/\2)(1 1,0). Fi-
nally, X to R refers to the line (7,k/\2,k/2).

The CE phase has 32 bands arising from the two e, orbit-
als of the 16 sites of the unit cell. Figure 4 displays the 32 ¢,
bands separated by the charge order gap into two subsets of
16 bands each. The Fermi level is at zero energy. Note that
the upper bands are much broader than the lower energy
subset. This is the consequence of the hard-core potential
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FIG. 5. Expanded view of the 16 lower energy e, bands of the
CE phase at x=0.5. The parameters are the same as in Fig. 4. The
Fermi energy is at zero energy. A strong collective Jahn-Teller effect
involving the Q, and Q3 modes would open a gap at the Fermi level
and render an insulating orbitally ordered ground state.

which allows each site to be occupied by at most one e,
electron (completeness condition). The charge gap then plays
no role neither for the ground-state nor the low-energy exci-
tations.

The bands within each group of 16 bands are further
grouped into four sets of four bands (see Fig. 5). A strong
Jahn-Teller effect involving a staggered mode of 3x*>—r* and
3y?—r? orbitals (linear combination of the two e, orbitals)
would open a gap separating the four lowest bands from the
remaining bands. Only under these circumstances is the sys-
tem an insulator, in agreement with the experimental find-
ings. The insulating state is then not a consequence of the
charge gap. The parameter &t does not play an important role
in this context.

B. Self-consistent solution

The numerical solution of the transcendental equations
determining b, b,, \|, and \, depends on x, W, and to a
lesser extent on ot. by=b, and \;=N\, is always a solution,
although not necessarily the one with lowest energy. How-
ever, not every value of W leads to a solution with charge
imbalance, b; # b,. This is seen in Fig. 6, where W/t is dis-
played as a function of (n;—n,)/(n,+n,) for various values
x. For x=0.5 the range of W for which there are solutions is
rather narrow. This range is expected to increase if the inter-
action mediated by the collective O, and Q3 modes is also
included (orbital order). Note the asymmetry of the curves as
a function of x about half filling.

The ground-state energy for the hopping Hamiltonian (ex-
cluding the energy of the superexchange (H,,) is shown in
Fig. 7 as a function of the relative charge imbalance (n;
—n,)/(n;+n,) between the two sublattices for &r=0.1¢. For
the larger values of x (fewer e, electrons than half filling) the
energy is independent of the charge imbalance while for x
<1/2 (more e, electrons than half filling) the energy be-
comes strongly dependent on (n;—n,)/(n; +n,).

C. Phase diagram

The phase diagram is constructed by comparing the
ground-state energies of the five phases for a given x and J/¢.
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FIG. 6. W/t vs the relative charge imbalance (n;—n,)/(n;+n,)
between the two sublattices obtained from the self-consistent solu-
tion of the transcendental equations for dt=0.17 for various x. For
x=1/2 the solutions correspond to a narrow interval of W while for
x# 1/2 the range is much larger. The curves for x<<1/2 are shown
as dashed lines.

For the A, B, C, and G phases the ground-state energy (for
fixed x) when normalized to the hopping 7 is only a function
of J/t. The ground-state energy of the CE phase depends, in
addition, on the interaction parameters W, and « [see Eq.
(10)]. We chose W,=3.11¢ and a=1.6.

Several energy crossovers are obtained for fixed x and as
a function of the superexchange coupling J. The phase dia-
gram is shown in Fig. 8. For sufficiently large J the G phase
is always the stable one since it has all AFM bonds and
hence the lowest magnetic energy. The B phase with all FM
correlated bonds has the lowest energy at most values of x
for small J. Here the double exchange is the dominating
magnetic interaction. The FM correlations are rapidly
quenched by the AFM superexchange J. The A, C, and CE
phases are intermediate phases between the FM B phase and
the AFM G phase. The CE phase involves a staggered charge
order and is therefore only stable close to half filling. The
calculation for the phases other than the CE phase is identi-
cal to that reported in Fig. 5(b) in Ref. 9.

0077

E/t

s | s | s | s s
190 0.2 0.4 0.6 0.8 1.0
(ny-n,)/(n,+n,)
FIG. 7. Ground-state energy as a function of the relative charge
imbalance (n,-n,)/(n,+n,) between the two sublattices for the

same parameters as in Fig. 6. Note the qualitative change in the
energy dependence for the various values of x.
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FIG. 8. Phase diagram obtained by comparing the ground-state
energies of the five phases as a function of J/¢ and x for the dis-
torted lattice for which the FM correlated bonds have a hopping
matrix element reduced by a factor (1-6¢/¢). Here 8r=0.1¢ and for
the CE phase we have chosen W;=3.11¢ and a=1.6. The dotted line
corresponds to the sequence of phases observed for LCMO (Ref. 6).

In comparison to the other phases the CE phase is clearly
most stable for half filling. The remarkable asymmetry of the
CE phase about the line x=1/2 is in part due to the asym-
metric behavior observed in Figs. 6 and 7, and in part a
consequence of the x dependence of W. Due to the hard-core
repulsion among the e, electrons (i.e., the assumption that
the only allowed configurations are Mn** and Mn**) it is not
the same to have checkerboard charge order with more than
half filling than with less than half filling. The CE phase with
charge order abruptly disappears for x<<1/2. The value of «
is not critical for the phase diagram. A smaller value for «
only slightly reduces the range of stability of the CE phase.

In Fig. 9 the effect of &t on the phase diagram is shown.
The global picture remains unchanged, although ot weakens
the B phase as compared to the G phase. For small x the A
phase becomes stable for lower values of J/t while the range
of stability of the C phase is reduced. The dotted horizontal
line in Fig. 8 roughly reproduces the sequence of phases
(A-B-CE-C-G) found for LCMO as a function of x. The
main importance of the parameter of is to improve the agree-
ment with the experiment. A detailed comparison with ex-
periments is difficult in view of phase separation in the vi-

0.08 T T T T

FIG. 9. Comparison of the phase diagram for &r=0.17 (solid
lines) with that for 8r=0 (dashed curves). The parameters for the
CE phase are W,=3.11¢ and a=1.6.
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cinity the phase boundaries. Here phase B is the only phase
with a spontaneous magnetization.

V. CONCLUDING REMARKS

We considered a simple-cubic lattice of intermediate va-
lent Mn ions, with three localized 3d electrons in the lye
orbitals and itinerant e, electrons. The density of e, electrons
is determined by the degree of doping, i.e., 1 —x. The first of
Hund’s rules couples all the 3d electrons ferromagnetically,
maximizing the total spin at each Mn site. The #,, spins of
the Mn ions interact with each other via a nearest-neighbor
superexchange mediated by the oxygen 2p electrons. In
LCMO the low-temperature phases are all magnetically or-
dered. The e, electrons can hop between nearest-neighbor
sites with hopping amplitudes that depend on the orbital
(x*-y? or 3z2—7?) and the magnetic phase. The excluded
multiple occupancy of the e, levels at each Mn site (due to
large Coulomb interactions) limits the Mn to be between
trivalent and tetravalent (intermediate valent) and is taken
into account via slave bosons in the saddle-point approxima-
tion.

In this paper we focused on the CE phase, which displays
charge order and orbital order in addition to the magnetic
order. The unit cell for this phase consists of 16 sites. Due to
the charge imbalance, two slave-boson expectation values
have to be introduced, one for each sublattice. The driving
force inducing the charge order is predominantly mediated
by the Jahn-Teller coupling to the breathing Q; mode of the
MnOg octahedra, although the Q, and Q5 vibration modes
also may play an important role, in particular, concerning the
long-range orbital order of the CE phase. The deviations
from cubic symmetry of the lattice affect the hopping ¢ and
the superexchange J. FM correlated bond lengths are slightly
longer than AFM correlated links. We took this effect into
account by reducing by &t the hopping matrix element of a
FM bond and similarly reducing the exchange by dJ.

For the driving potential for the charge order we only
considered the Q; Jahn-Teller mode, neglecting the coupling
to the Q, and Q5 modes. The Q; mode (volume of the octa-

PHYSICAL REVIEW B 80, 104428 (2009)

hedra) yields the dominant contribution to charge order. A
consequence of this approximation is that for x=0.5 a self-
consistent solution only exists over a very narrow range of
Wy/t values. This essentially determines the value of W/t
within the present scheme. We believe that if the interactions
mediated by the O, and Q5 modes are included, the range of
W/t for which solutions are available would be considerably
larger. The value of the parameter « is less critical; it does
not affect the physics close to x=0.5 and only determines the
range of the stability of the CE phase for larger x. The larger
the value of «, the larger is the range of stability of the CE
phase.

We calculated the band structure of the CE phase, which
consists of 32 e, bands separated by the charge order gap
into two subsets of 16 bands each. Due to the excluded mul-
tiple occupancy of the e, levels at every Mn site (hard-core
potential) the charge gap does not directly affect the ground-
state and the low-energy excitations of the CE phase. A
strong collective Jahn-Teller coupling to the Q, and Q;
modes is needed to generate the staggered orbital order in-
volving 3x>—7? and 3x*—7r? orbitals. For x=1/2 the long-
range orbital order opens a gap at the Fermi level rendering
an insulating CE phase, in agreement with experimental ob-
servations. The CE phase is energetically very favorable for
half filling; for departures from half-filling phase separation
into a half-filled CE phase and a B phase (x<<1/2) or C
phase (x>1/2) is then to be expected.

The self-consistent solution of the mean-field equations
shows a strong anisotropy about half filling. This is again the
consequence of the hard-core potential. We found that the
CE phase is favored in a small region for x=1/2. For x
<1/2 the stable phase is the FM B phase and for larger x the
C phase has lower energy. The inclusion of the parameter ot
is important to reproduce the experimental sequence of
phases for LCMO.5
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